A process-based understanding of regional climate responses to CO₂ forcing

Christopher Skinner, Robin Chadwick, Hervé Douville and Noah Diffenbaugh

Objective

Introduce an ensemble of AGCM timeslice experiments designed to identify and better understand the mechanisms that shape the response of regional climate to CO₂ forcing.

Research Questions

- 1. How do regional climate responses in a coupled model arise from the combination of responses to CO₂ forcing?
 - DIRECT CO₂ EFFECT
 - PLANT PHYSIOLOGICAL EFFECT
 - UNIFORM SST WARMING
 - SST PATTERN CHANGE

Research Questions

- 1. How do regional climate responses in a coupled model arise from the combination of responses to CO₂ forcing?
 - DIRECT CO₂ EFFECT
 - PLANT PHYSIOLOGICAL EFFECT
 - UNIFORM SST WARMING
 - SST PATTERN CHANGE
- 2. Which aspects are most important for causing intermodel uncertainty?

Research Questions

- 1. How do regional climate responses in a coupled model arise from the combination of responses to CO₂ forcing?
 - DIRECT CO₂ EFFECT
 - PLANT PHYSIOLOGICAL EFFECT
 - UNIFORM SST WARMING
 - SST PATTERN CHANGE
- 2. Which aspects are most important for causing intermodel uncertainty?
- 3. What impact do coupled model SST biases have on regional climate projections?

Presentation Outline

1. CFMIP2/CMIP5 idealized experiments

2. Framework of new idealized experiments

3. Preliminary results

4. Summary

CFMIP2/CMIP5 Experiments

Idealized Experiments to Understand Complex Climate Change Signals

sstClim sstClim4xCO2 amip amip4xCO2 amip4K amipFuture

Idealized Experiments to Understand Complex Climate Change Signals

sstClim sstClim4xCO2 amip amip4xCO2 amip4K amipFuture

CMIP5 Multi-model Mean Precipitation Change JJA (mm/day/K)

Current amip, amipFuture, etc... expts are useful, but do not linearly sum to give the coupled AOGCM response in many regions.

Experiment	Description
sstPiControl	SSTs from model's own control run. Pre-industrial atmospheric constituents. Similar to CFMIP2 SSTClim experiment.

Experiment	Description	
sstPiControl	SSTs from model's own control run. Pre-industrial atmospheric constituents. Similar to CFMIP2 SSTClim experiment.	
sstPi4xCO ₂	sstPiControl with quadrupled CO_2 concentrations. Similar to CFMIP2 SSTClim4x CO_2 experiment.	
sstPi4xCO ₂ Veg	As $sstPi4xCO_2$ but with plant physiological effect able to respond to change in CO_2 concentration.	

Experiment	Description		
sstPiControl	SSTs from model's own control run. Pre-industrial atmospheric constituents. Similar to CFMIP2 SSTClim experiment.		
sstPi4xCO ₂	sstPiControl with quadrupled CO_2 concentrations. Similar to CFMIP2 SSTClim4x CO_2 experiment.		
sstPi4xCO ₂ Veg	As $sstPi4xCO_2$ but with plant physiological effect able to respond to change in CO_2 concentration.		
sstPi4K	sstPiControl with a uniform global 4K SST perturbation		
sstPiFuture	sstPiControl with pattern of future SST anomalies, taken from each model's own abrupt4xCO ₂ expt, normalised to have a global mean perturbation of 4K.		

Experiment	Description			
sstPiControl	SSTs from model's own control run. Pre-industrial atmospheric constituents. Similar to CFMIP2 SSTClim experiment.			
sstPi4xCO ₂	sstPiControl with quadrupled CO_2 concentrations. Similar to CFMIP2 SSTClim4x CO_2 experiment.			
sstPi4xCO ₂ Veg	As $sstPi4xCO_2$ but with plant physiological effect able to respond to change in CO_2 concentration.			
sstPi4K	sstPiControl with a uniform global 4K SST perturbation			
sstPiFuture	sstPiControl with pattern of future SST anomalies, taken from each model's own abrupt4xCO ₂ expt, normalised to have a global mean perturbation of 4K.			
sstPiTot	Combination of sstPiFuture and sstPi4xCO ₂ Veg to test for linearity of response.			
amipTot	As sstPiTot but with amip baseline SSTs. Used to test influence of model SST biases on future projections.			

Annual Precipitation Change

Annual Precipitation Change

Annual Precipitation Change HadGEM2

mm day⁻¹

Annual Precipitation Change

Annual Precipitation Change

Seasonal Precipitation Change Vegetation Response to 4xCO₂

Sea Level Pressure Change DJFM (hPa)

 Can successfully decompose the coupled model response into individual responses to CO₂ forcing

- Can successfully decompose the coupled model response into individual responses to CO₂ forcing
- Use of model's own SST patterns and inclusion of vegetation response to CO₂ greatly improves agreement with coupled model response

- Can successfully decompose the coupled model response into individual responses to CO₂ forcing
- Use of model's own SST patterns and inclusion of vegetation response to CO₂ greatly improves agreement with coupled model response.
- Vegetation response to CO₂ may contribute substantially to inter-model spread in precipitation projections within tropical forest regions

- Can successfully decompose the coupled model response into individual responses to CO₂ forcing
- Use of model's own SST patterns and inclusion of vegetation response to CO₂ greatly improves agreement with coupled model response.
- Vegetation response to CO_2 may contribute substantially to inter-model spread in precipitation projections within tropical forest regions.
- SST pattern change largely responsible for the pattern of precipitation responses over oceans

Extra Slides

Sea Level Pressure Change DJFM (hPa)

HadGEM2 Mean Precipitation Change DJF (mm/day)

amipFuture (CMIP3 Pattern) + amip4xCO₂

1.8

-1.8

R = 0.34

Poor pattern agreement

Precipitation Change DJFM (mm/day)

-1.0 -0.6 -0.2 0.2 0.6 1.0

Precipitation Change DJFM (mm/day)

Direct CO2 Effect (w/o Vegetation Physiological Effect) **Seasonal Precipitation Change**

Potential Refinement of Experiments

- Rather than 4K warming, use global mean SST anomaly from each model's own coupled abrupt4xCO2 run.
 - Use in all "future" sst experiment runs

Potential Refinement of Experiments

- Rather than 4K warming, use global mean SST anomaly from each model's own coupled abrupt4xCO2 run.
 - Use in all "future" sst experiment runs
- Rather than add the 50-year mean anomaly of future SSTs to the time-varying preindustrial SSTs, use the time-varying monthly SSTs from the coupled abrupt4xCO2 run.
 - Use in sstPiFuture and sstPiTot runs
 - Include future sea ice concentrations?